Experiential avoidance (EA) is a regulatory strategy characterised by efforts to control or avoid unpleasant thoughts, feelings and bodily sensations. Most studies of EA have used trait measures without considering the effects of EA on psychological functioning in naturalistic settings. To address this gap, we used daily diary methodology to examine the influence of EA on anxiety on everyday well-being. For two weeks, 89 participants provided daily reports of EA, positive and negative affect, enjoyment of daily events and meaning in life (MIL). Daily EA predicted higher negative affect, lower positive affect, less enjoyment of daily events (exercising, eating food and listening to music) and less MIL. The effect of EA on positive affect was not accounted for by the amount of negative affect experienced. Our daily measure of EA was a stronger predictor of daily well-being than a traditional trait measure (The Acceptance and Action Questionnaire). Taken together, results offer insights into the adverse effects of EA on daily well-being and suggest that EA is a context-specific regulatory strategy that might be best captured using a state-dependent measure.

Keywords: Experiential avoidance; Well-being; Daily diary methodology.

Experiential avoidance (EA) is a regulatory strategy characterised by efforts to control or avoid unpleasant thoughts, feelings and bodily sensations (Hayes, Luoma, Bond, Masuda, & Lillis, 2006). A growing body of evidence suggests that EA tends to be a maladaptive emotion regulation strategy linked with a lower quality of life (Hayes et al., 2004) and worse emotional and psychological well-being (Kashdan, Barrios, Forsyth, & Steger, 2006). Unfortunately, nearly every published study of EA has relied on a global trait questionnaire to assess the presence of EA—participants are asked to endorse general statements about unwanted thoughts, feelings and sensations across time and context such as “Anxiety is bad” and “I am able to take action on a problem even if I am uncertain...
what is the right thing to do” (rated from 1 = never true to 7 = always true) (Hayes et al., 2004). Emotion regulation theorists have argued that EA is not a static feature of humanity and, instead, is a state-dependent process that is sensitive to social contexts (Gross & John, 2003; Kashdan, Farmer et al., 2013). The current study adopted this dynamic within-person approach to EA to study the association with three core components of well-being: affect, enjoyment of pleasurable events and a sense of meaning in life (MIL).

EA AND WELL-BEING

There is a substantial body of research suggesting that rigid adherence to inhibitory emotion regulation strategies is detrimental to psychological well-being. Inhibition of outward emotional expression has been linked to increases in unwanted emotional experiences (Gross & Levenson, 1997). Similarly, avoidance of internal emotional experience is thought to be an unhelpful emotion regulation strategy linked with poor psychological functioning (Kashdan et al., 2006). When people are asked to suppress negative emotions, they report a temporary success in down-regulating initial discomfort, but ultimately experience a rebound effect whereby undesirable emotions increase (Hayes, Strosahl, & Wilson, 1999). EA is one such strategy that is employed to reduce distress, yet has the paradoxical effect of increasing unwanted emotional experiences (Hayes, Wilson, Gifford, Follette, & Strosahl, 1996). Research has demonstrated the temporal role of EA of anxiety in increasing the very symptoms of anxiety that were the target of the avoidance (Kashdan et al., in press). Although use of inhibitory regulation strategies increases negative emotions, the same is not true for positive emotions. Experimental research on the use of suppression strategies suggests that attempts to inhibit emotional expression not only increase negative emotions but also decrease positive emotions (Gross & John, 2003). Experience sampling research demonstrates a similar finding for EA: people who score high on a trait measure of EA report more daily negative affect and less daily positive affect than people with lower EA scores (Kashdan et al., 2006), suggesting that EA interferes with well-being.

In addition to emotional disturbances, EA may interfere with the enjoyment of everyday events by draining resources necessary for attention and engagement. In any given moment, human beings possess finite cognitive resources and physical stamina. Expending valuable energy on EA pulls a person away from what is unfolding in the present moment, reducing their potential to devote effort and make progress towards valued goals (Hayes et al., 2006). People who are hyper-focused on regulating, avoiding and concealing emotions direct their attention inward and, in turn, are less able to attend and respond to pleasant life events. This could apply to events beyond those that are very positive or highly arousing. Devoting excessive time to avoid unwanted emotions (internally and externally) is likely to reduce the available mental resources needed to enjoy the most basic pleasurable events (e.g., exercising, eating food, listening to music, having sex). Attempts to rid certain emotions to prevent adverse experiences may effectively reduce other emotions that are in fact highly desirable.

EA inhibits the approach-oriented behaviours necessary to seek out and enjoy valued experiences (Hayes et al., 1999) that may contribute to a sense of MIL, which is widely considered a component of one’s broader subjective well-being (e.g., Steger, Kashdan, & Oishi, 2008). Indeed, EA (measured as a stable, global trait) has been associated with decreased global (Kashdan & Breen, 2007) and daily (Kashdan et al., 2006) MIL. Because individuals who use EA are less able to be in contact with and enjoy daily events, and tend to experience more daily negative affect and less daily positive affect, they may perceive their daily lives as less meaningful.

EA AND WELL-BEING AS DYNAMIC DAILY PROCESSES

Despite the common conceptualisations of EA as an inflexible regulatory strategy (e.g., Hayes et al., 1996; Kashdan et al., 2006), the effects of using EA are not uniform across all situations and may differ
between and within individuals. A person-by-situation approach to emotion regulation suggests that, rather than categorising regulatory strategies as either helpful or harmful, the adaptiveness of emotion regulation strategies depends on the context in which they are used (Aldao, 2013; Kashdan & Rottenberg, 2010). For example, the effects of EA have been shown to vary in response to changing situational demands (Kashdan et al., in press) and individual goals (Kashdan & Breen, 2007). This research ties EA back to theoretical frameworks that suggest this is a dynamic process (Hayes et al., 1996, 2004) that cannot be studied with static measurement approaches. Accordingly, the status quo of assessing EA as a dispositional trait does not adequately capture how the effects of EA might change depending on the situation, nor does it provide information on how EA affects psychological functioning in the context of daily life.

Recent daily diary studies have begun to assess EA as a state-dependent construct, with findings that highlight the need to study EA across time and situation. For example, Shahar and Herr (2011) found that healthy individuals tend to use EA on days when they experience more negative affect, but depressed individuals demonstrate a more inflexible pattern of use and rely on EA even at low levels of daily negative affect. This nuanced relationship would not have emerged had these researchers used a traditional global measure of EA, such as both versions of the Acceptance and Action Questionnaire (AAQ; Bond et al., 2011; Hayes et al., 2004) and the Multidimensional Experiential Avoidance Questionnaire (Gamez, Chmielewski, Kotov, Ruggero, & Watson, 2011).

Well-being also fluctuates on a daily basis and may vary meaningfully within individuals. A robust literature on intra-individual variability in mood demonstrates that levels of positive and negative affect change from day to day (e.g., Eid & Diener, 1999). Daily diary studies have illustrated daily fluctuations in MIL, with one study demonstrating that the majority of variability in MIL judgments was within people (82%) rather than between people (King, Hicks, Krull, & Del Gaiso, 2006). To fully understand how EA impacts well-being, we must examine these relationships in the context of people’s daily lives. The current study is the first to use a dynamic approach to EA and well-being.

THE PRESENT STUDY

The inverse association between EA and well-being is largely based on measures of EA as a fixed trait rather than a dynamic state. As a result, researchers possess limited knowledge of how EA impacts well-being in the context of daily life. To address this gap, we conducted a daily diary study examining the influence of daily EA of anxiety on daily well-being. Rather than creating a single, global construct of well-being as an outcome, we relied on core components of subjective well-being from dominant theories and empirical research (e.g., Diener, Suh, Lucas, & Smith, 1999; McKnight & Kashdan, 2009)—positive and negative affect, enjoyment of daily events and daily MIL. We hypothesised that daily EA of anxiety would predict less positive affect, more negative affect, less enjoyment of daily events and less daily MIL. To address the importance of using a dynamic approach, we examined whether daily EA predicted indicators of well-being over and above an existing trait measure of EA.

METHOD

We report how we determined our sample size, all data exclusions, all manipulations and all measures in the study. The current study is one of a series of papers derived from a larger data-set collected to understand emotion and emotion regulation in daily life. Measures not examined in the current study are reported elsewhere (DeWall, Lambert, Pond, Kashdan, & Fincham, 2013; Study 2; Farmer & Kashdan, 2012; Kashdan, Dewall et al., 2013, Study 3; Kashdan & Nezlek, 2012; Kashdan, Yarbro, McKnight, & Nezlek, 2014). Data were collected in two waves from a total of 173 participants. Measures of EA were only collected during the second wave, which included the 95 participants we discuss below.
Participants

Participants were 95 college students (82% women; 54% Caucasian; mean age = 21.10, SD = 2.12) who participated for course credit. Of these participants, 89 (81% women; 54% Caucasian; mean age = 21.18, SD = 2.22) completed questions about EA and well-being at the end of the day for two weeks. These 89 participants provided 1261 valid daily entries (M = 14.17, SD = 2.25). A valid entry had to be completed between 6:00 pm of the day in question and 10:00 am of the following day.

Procedure

Participants were recruited via flyers and online advertisements. Small groups of participants attended meetings (1.5 hours) during which they completed demographic and trait measures, and where instructions were given about web-based daily data collection. Participants were asked to complete their daily reports at the end of each day (before going to sleep) for 14 consecutive days. Date and time stamps were inspected to ensure compliance with these guidelines. Throughout the study, participants received weekly email reminders, and all study instructions were available online.

Daily measures

At the end of each day of the study, participants logged onto the secure website to provide daily measures of EA, positive and negative affect, enjoyment of exercising, eating food, listening to music, and MIL. Daily measures used modifications of items from corresponding trait measures to include a specific focus on the day as the unit of analysis. Reliability estimates for the daily measures are presented in the Results section.

Experiential avoidance

Daily EA was measured using a 4-item state measure of EA (Kashdan, Farmer, et al., 2013). Participants answered, “How upset and distressed over anxiety were you?”, “How much effort did you put into making anxiety-related feelings or thoughts go away?”, “How much did you struggle to control your anxiety-related feelings or thoughts?” and “To what extent did you give up saying or doing what you like (or mattered to you) in order to control and manage your anxiety?” Participants answered using a 7-point scale with endpoints 1 = “not at all” and 7 = “very much”. In the current sample, this measure had a correlation of .82 with a measure of daily suppression of negative emotions, demonstrating acceptable convergent validity, and has also shown acceptable reliability and validity in past research (Kashdan, Farmer et al., 2013).

Positive and negative affect

Daily positive and negative affect was measured by responses to six positively valenced adjectives (excited, enthusiastic, happy, relaxed, calm and satisfied) and six negatively valenced adjectives (nervous, embarrassed, upset, sad, bored and disappointed). Participants answered using a 7-point scale with endpoints 1 = “Did not feel this way at all” and 7 = “Felt this way very strongly”.

Event enjoyment

Daily enjoyment of exercising, eating food, listening to music and having sex was measured by responses to the item “How much pleasure did you experience today from (respective activity)?” Participants answered using a 7-point scale with endpoints 1 = “not at all” and 7 = “very much”.

Meaning in life

Daily MIL was measured with the Daily Meaning Scale (Steger et al., 2008), a 2-item scale asking “How meaningful did you feel your life was today?” and “How much did you feel your life had purpose today?” Participants answered using a 7-point scale with endpoints 1 = “not at all” and 7 = “very much”.

Trait measures

Experiential avoidance

The AAQ (Hayes et al., 2004) is a 9-item measure of EA that assesses tendencies to make negative
evaluations of private events (e.g., “anxiety is bad”), unwillingness to remain in contact with these events, the need/desire to control or alter these events and the inability to take action in the face of negatively evaluated private events. The psychometric properties of this scale have been established in both clinical and non-clinical samples (e.g., Feldner, Zvolensky, Eifert, & Spira, 2003; Hayes et al., 2004). Participants responded to items using a 7-point Likert scale (α = .69). Higher scores indicate greater EA. The mean score on the AAQ was 33.40 (SD = 8.59).

Anxiety

Because our measure of EA emphasised avoidance of anxiety, the Social Interaction Anxiety Scale (SIAS; Mattick & Clarke, 1998) was included to measure baseline levels of anxiety in our sample. The SIAS is a 20-item measure of participants’ fear and avoidance of social interactions. Participants responded to items using a 5-point Likert scale (α = .89). The mean score on the SIAS was 24.94 (SD = 14.18), with 20 participants (23%) reporting clinical levels of anxiety (scores > 34). Participants’ social anxiety scores were comparable to other undergraduate samples. In the original validation paper for the SIAS, Mattick and Clarke (1998) reported a mean score of 19.0 (SD = 10.1) for undergraduate participants. Another study examining social anxiety in college students reported a mean SIAS score of 22.38 (SD = 15.40; Purdon, Antony, Monteiro, & Swinson, 2001).

RESULTS

Analytic strategy

Our primary interest was in the slope between EA on a given day and (1) positive and negative affect, (2) event enjoyment and (3) MIL. The data were conceptualised as hierarchically nested with days nested within persons. Analyses were conducted with a series of multilevel models using the programme HLM (Raudenbush, Bryk, Cheong, & Congdon, 2000).

Daily measures: Descriptive statistics

The reliability of the daily measures was examined by conducting three-level models with items nested within days, and days nested within people. These reliability estimates (presented in Table 1) provide evidence for the acceptable reliability of each daily measure. Because the event enjoyment measures consisted of only one item, the reliability estimate was not calculated. Upon examining the partitioning of variance, we found that there was greater within-person variability than between-person variability for each measure. These results support our approach of conducting within-person (day-level) analyses.

<table>
<thead>
<tr>
<th>Item</th>
<th>Between-person variability</th>
<th>Within-person variability</th>
<th>Item-level reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily experiential avoidance</td>
<td>2.48 (1.37)</td>
<td>.31</td>
<td>.61</td>
</tr>
<tr>
<td>Positive affect</td>
<td>4.20 (1.25)</td>
<td>.27</td>
<td>.73</td>
</tr>
<tr>
<td>Negative affect</td>
<td>2.20 (1.05)</td>
<td>.33</td>
<td>.68</td>
</tr>
<tr>
<td>Enjoyment of exercising</td>
<td>2.32 (1.86)</td>
<td>.30</td>
<td>—</td>
</tr>
<tr>
<td>Enjoyment of eating food</td>
<td>4.05 (1.67)</td>
<td>.29</td>
<td>.70</td>
</tr>
<tr>
<td>Enjoyment of listening to music</td>
<td>4.42 (2.03)</td>
<td>.42</td>
<td>.58</td>
</tr>
<tr>
<td>Enjoyment of having sex</td>
<td>2.18 (2.10)</td>
<td>.42</td>
<td>—</td>
</tr>
<tr>
<td>Meaning in life</td>
<td>9.02 (3.21)</td>
<td>.47</td>
<td>.53</td>
</tr>
</tbody>
</table>

Note: The four enjoyment items are single items and thus, reliability cannot be calculated. We kept them separate because they describe discrete, concrete activities.
Daily EA and daily well-being

Our initial analyses examined within-person relationships between daily EA and daily positive and negative affect, event enjoyment and MIL. Daily EA served as the predictor and daily well-being variables served as outcomes. Daily EA was entered group-mean centred, which meant that coefficients described relationships between deviations from a person’s mean score on daily EA and the outcome measures. The null hypothesis in these analyses was that the mean within-person relationship between EA and a measure of well-being was 0. This was tested by the γ_{10} coefficient in the last of the three equations below.

Day level: $y_{ij} = \beta_{0j} + \beta_{ij} \text{(Daily EA)} + r_{ij}$

Person-level intercept: $\beta_{0j} = \gamma_{00} + u_{0j}$

Person-level slope: $\beta_{ij} = \gamma_{10} + u_{ij}$

As expected, EA predicted less positive affect, $B = -.39$, $t(88) = -11.60$, $p < .001$, and more negative affect, $B = .42$, $t(88) = 16.00$, $p < .001$. Daily EA predicted less enjoyment of exercising, $B = -.14$, $t(88) = -3.00$, $p < .01$, eating food, $B = -.18$, $t(88) = -4.06$, $p < .001$, and listening to music, $B = -.12$, $t(88) = -2.20$, $p < .05$. Daily EA was unrelated to enjoyment of having sex, $B = -.01$, $t(88) = -.20$, $p = .84$. Daily EA predicted less daily MIL, $B = -.46$, $t(88) = -5.63$, $p < .001$.

Trait EA and daily well-being

Additional analyses examined the relationship between trait EA measured by the AAQ and daily indicators of well-being. In these models, trait and daily EA served as predictors and the daily well-being variables served as outcomes. Entering both trait and daily EA as simultaneous predictors of daily well-being revealed that only daily EA significantly predicted less positive affect, $B = -.39$, $t(84) = -11.53$, $p < .001$, more negative affect, $B = .42$, $t(84) = 16.16$, $p < .001$, less enjoyment of exercising, $B = -.15$, $t(84) = -3.28$, $p < .01$, eating food, $B = -.18$, $t(84) = -4.36$, $p < .001$, listening to music, $B = -.12$, $t(84) = -2.24$, $p < .05$, and less MIL, $B = -.46$, $t(84) = -5.47$, $p < .001$. Trait EA did not significantly predict variance in any of the daily indicators of well-being beyond that being predicted by the state measure of EA (ps ranged from .10 to .80).

Construct specificity with negative affect

As expected, daily EA and daily negative affect were positively related, $B = .43$, $t(88) = 15.63$, $p < .01$. To test whether the effects of trying to avoid unpleasant experiences is best explained by the intensity/frequency of negative experiences, we used negative affect as a covariate in subsequent analyses. We conducted multilevel analyses with daily EA and daily negative affect as simultaneous predictors of daily well-being variables. Upon controlling for daily negative affect (a conservative test), EA still predicted less daily positive affect, $B = -.16$, $t(88) = -5.01$, $p < .001$, but no longer predicted decreased daily MIL, $B = -.06$, $t(88) = -.74$, $p > .40$. When we included negative affect as a predictor, EA approached significance for predicting enjoyment of eating food, $B = -.09$, $t(88) = -1.94$, $p = .055$; when negative affect was added as a covariate, EA was no longer a significant predictor of enjoyment of exercising or listening to music (ps > .05).

DISCUSSION

The present study assessed EA as a state-dependent variable to determine the effects of EA of anxiety on everyday experiences. Results suggest that EA is detrimental to daily well-being and may influence the extent to which people’s well-being fluctuates from day to day. Using EA on a given day predicted more daily negative affect, and less daily positive affect, enjoyment of daily events and daily MIL. Daily EA was a better predictor of these indicators of daily well-being than dispositional (trait) levels of EA. One explanation is that
some effects of EA might be a function of the amount of negative affect experienced on a given day. When negative affect was accounted for, daily EA was still related to less daily positive affect and approached significance for less enjoyment of eating food. EA no longer predicted enjoyment of exercising or listening to music, or daily MIL.

Our data support prior work that EA prevents reward responsiveness to daily life activities. While there is a rich theoretical framework that suggests EA negatively impacts well-being by interfering with the ability to pursue valued life goals (Hayes et al., 1999), few studies have examined how this process unfolds over the course of daily life. Our results provide evidence that the pernicious effects of EA can be observed on a daily basis and that using EA disrupts indicators of daily well-being. Further, we provide contextual evidence of how EA can be problematic in everyday life by hindering the ability to extract rewards from everyday experiences.

Our results emphasise the importance of studying EA as a dynamic process rather than as a fixed trait. While trait measures like the AAQ predict other trait phenomena (such as global indicators of well-being), these traditional global approaches to measurement may be problematic if one is interested in capturing dynamic, contextual phenomena. Measuring EA as a stable, between-person construct fails to capture the natural fluctuations in the use of EA to regulate emotions and as a result appears to offer less utility in understanding people's quality of life.

Although our methods extended the study of EA beyond traditional trait measures and single-occasion measurement, our results should be interpreted in the light of several limitations. First, several researchers have highlighted concerns about our trait measure of EA (the AAQ-9), including issues with item wording and scale brevity, and suggest the use of the updated, more psychometrically sound version of the AAQ (AAQ-II, Bond et al., 2011). In addition, the AAQ represents a broader, global measure of EA, whereas our 4-item measure of EA is a narrower, facet measure of EA. As a result, conclusions drawn about the predictive validity of our state measure over the more traditional trait measure might be limited. Because our measure of EA was restricted to the avoidance of anxiety, and not global/general negative affect, the implications of our results cannot extend to all instances of EA. Future research should examine how state measures of EA directed to thoughts, feelings, impulses and bodily sensations beyond the scope of anxiety impact daily well-being. Future research should examine how state measures of other types of EA impact daily well-being. Our state measures are self-report measures that participants completed at the end of the day, albeit in the context of an intense, repeated measurement design. Future research might consider additional measurement approaches that minimise recall bias, such as event-contingent reporting where participants report events as they occur.

Our convenience sample of college students, mostly women, limits the generalisability of these results to other populations. Replications are necessary to explore whether the same relationship between daily EA and decreased daily well-being is consistent within other age groups. Additionally, while positive and negative affect, event enjoyment and MIL are important elements of well-being, there are a large number of well-being indicators that were not measured in this study. We look forward to future research that expands upon our results by examining the effects of EA on additional components of well-being, such as life satisfaction, personal growth, wisdom and the capacity to love and be loved.

Despite these limitations, our findings provide new insights into the adverse consequences of EA on well-being and the importance of moving beyond trait measures when attempting to understand emotion regulation. Future research should examine the use of EA in various situations (i.e., before and after specific social interactions) to further explore how and when EA is detrimental to well-being. Researchers also might benefit from using multiple daily assessments to assess temporal sequences that may exist between daily EA and well-being. For example, a recent study demonstrated the temporal role of EA in eliciting feelings of social anxiety (Kashdan et al., in press). Increasing our knowledge of how EA disrupts
well-being is important, but equally and perhaps even more important is to begin investigating ways to counteract the negative impact of using EA. Insight into other daily processes that might dampen or strengthen the relationship between EA and daily well-being will provide guidance to both researchers and clinicians interested in decreasing distress and promoting well-being.

REFERENCES

Kashdan, T. B., Dewall, C. N., Pond, R. S., Silvia, P. J., Lambert, N. M., Fincham, F. D., … Keller, P. S. (2013). Curiosity protects against interpersonal aggression: Cross-sectional, daily process, and

